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Abstract. Thermal convection in magnetic fluids can be driven by buoyancy or by magnetic forces (due
to the thermomagnetic effect). Depending on the direction of the applied temperature gradient, buoyancy
effects can be stabilizing (heating from above) or destabilizing (heating from below), whereas the magnetic
forces always play a destabilizing role for magnetic fields perpendicular to the interface. We investigate
the influence of rotations using both linear and weakly non-linear analyses of the governing hydrodynamic
equations in the Boussinesq approximation. With a linear stability analysis we determine the values of the
wavelength and the temperature gradient at the onset of convection (critical values). These are calculated
analytically in the case of stress free boundaries and numerically for rigid boundaries. We discuss the
validity of the assumptions entering the calculations for stress free boundaries. In the case of free boundary
conditions, asymptotic expressions of the critical values for high rotation rates are derived. When the system
is heated from above and the magnetic forces only slightly exceed the buoyancy forces, linear results show
that both the critical wavelength and the critical temperature gradient diverge. Again, this behavior is
described by asymptotic expressions. We derive envelope equations for convection patterns characterized
by both: one wave vector and two competing wave vectors of equal length but different directions. These
equations show that the system always exhibits a forward bifurcation. The well-known Küppers-Lortz
instability is also present in magnetic fluids. This instability sets in at critical values for a sufficiently
high rotation rate. In simple fluids the angle α depends only on the Prandtl number of the fluid. We
show that for magnetic fluids this angle can be changed by changing the ratio of the buoyancy forces to
the magnetic forces (i.e. by changing the magnetic field). There is also a weak dependence on the other
magnetic parameters of the system. For a commercially available magnetic fluid this angle can be increased
by approximately 10◦ – 15◦ compared to the simple fluid case.

PACS. 75.50.Mm Magnetic liquids – 47.54.+r Pattern selection; pattern formation –
05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

Convection in a rotating layer of a fluid is an intensely
studied field, however there remain many open questions.
To start with the simplest case, consider a layer of a sim-
ple fluid heated from below. Everyday experience shows
that the thermally conductive ground state of this system
becomes unstable to a convective state as the tempera-
ture difference between the top and the bottom of the fluid
layer rises above a certain critical value. A broad overview
of the state of knowledge on convection phenomena in a
layer of simple fluid was given by Chandrasekhar [1]. Be-
yond the linear analysis summarized by Chandrasekhar
Schlüter, Lortz and Busse [2] performed pioneering work
using a weakly nonlinear analysis of the equations gov-
erning a non-rotating fluid layer heated from below. They
showed that, within a certain area in parameter space,
convection rolls are stable just above the onset of convec-
tion. For convection in a rotating layer of a simple fluid,
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Küppers and Lortz [3] predicted an instability of the con-
vection pattern at onset to a similar pattern which is ro-
tated by a certain angle with respect to the initial pat-
tern, if the rotation rate exceeds a certain critical value.
Thus the Küppers-Lortz (KL) instability gives the oppor-
tunity to study complex pattern dynamics in a parame-
ter range in which a weakly nonlinear analysis should be
valid. Busse and Heikes [4] observed the KL instability ex-
perimentally and found an angle close to 60◦, which is in
good agreement with theoretical predictions. Over the last
decade renewed interest in the KL instability grew [5–11].
The experimental work shows several features which are
not covered by the weakly nonlinear theory. Among these
are: KL instability may set in for values less than the
critical rotation rate if the applied temperature gradient
is sufficiently larger than the critical temperature gradi-
ent. The switching angle found experimentally at rotation
rates above critical is usually close to 60◦ [4,10]. The theo-
retical predictions range from 10◦ to 60◦ depending on the
Prandtl number of the fluid [7,10] and differ from those
experimentally found [9,10].
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Magnetic fluids (often called ferrofluids) are colloidal
suspensions of small magnetic monodomain particles
(their diameter is typically 10 nm) in a carrier fluid. In an
applied field these fluids react like super-paramagnets with
a susceptibility at low fields of up to 10. Since the magnetic
potential energy of the magnetic particles in typical fields
(up to a few 10−2 T) is comparable to the thermal energy
kT , the magnetization of these fluids depends strongly on
temperature. For a detailed introduction to magnetic flu-
ids see [12–15]. Placed in a magnetic field, a magnetic fluid
experiences a body force, usually written as the Kelvin
force µ0M · ∇H. We note that there is still a controversy
on the correct formulation of this body force (see e.g. [16]);
however, the discussed formulations are equivalent in the
approximations we make in this paper (see below). The
dependence of the magnetization on temperature leads
to a second driving mechanism for convection [17]. As
we explain below, magnetically driven convection oc-
curs when the system is heated from below or above.
Finlayson [17] and later Gotoh and Yamada [18] analyzed
linear convection in a non-rotating layer (horizontally un-
bounded) of a magnetic fluid. Schwab and coworkers ver-
ified their results experimentally and visualized the flow
pattern [19–21]. However, they had to apply an additional
magnetic field in the plane of the layer to align the con-
vection rolls. In the absence of this longitudinal field they
found an irregular convection pattern. Further theoret-
ical investigations on the problem were done by Stiles,
Blennerhassett and co-workers [22–25]. They showed that
the critical temperature difference and the critical wave
number of the convection pattern at the onset of convec-
tion may increase drastically if the system is heated from
above [23,25]. In their nonlinear analysis of the system
they concentrated mainly on the heat transfer through
the layer [23–25]. Using weakly nonlinear analysis Bajaj
and Malik [26] concluded that straight convection rolls
are stable just above the onset of convection in the case of
stress free boundaries. All this theoretical work was done
assuming non-deformable boundaries of the fluid layer.
Quite recently Weilepp and Brand [27] showed that the
convection rolls interact with the normal field surface in-
stability (Rosensweig instability [28]) of magnetic fluids if
the upper boundary is assumed to be deformable.

We note that there are some other systems to which
the analysis presented in the following applies. Con-
vection in paramagnetic liquids under strong magnetic
fields [29,30] as well as in dielectric liquids under elec-
tric fields [31] is governed by an isomorphic set of equa-
tions if the same geometry is considered. In the latter case,
however, the convection mechanism due to the Kelvin
force is frequently altered substantially by various other
mechanisms if free charge carriers (electrons and ions) are
present, due to impurities.

Here we study for the first time, linearly and weakly
nonlinearly, the influence of rotation on the onset of ther-
mal convection in a magnetic fluid. In particular we inves-
tigate how the KL instability is altered on going from the
simple fluid limit to the magnetic dominated convection.
We demonstrate that the KL angle can be tuned in this
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Fig. 1. A vertical cut through the fluid layer. Note the y-axis
points into the xz-plane.

system continuously by changing the magnetic field and
varied in total over more than 10 degrees.

The paper is organized as follows. After a brief outline
of the system under investigation and its convection mech-
anisms we present the mathematical description (Sect. 2).
In Section 3 we perform a linear stability analysis which
will be the basis of the investigation of the Küppers-Lortz
instability in Section 4.

2 Convection mechanisms
and their mathematical formulation

Figure 1 gives a schematic overview of the geometry in-
vestigated. We consider a layer of a magnetic fluid of con-
stant thickness d parallel to the xy-plane with no lateral
boundaries. The upper and lower boundaries are situated
at z = ±d2 . The temperatures θ1 and θ2 are applied to
the lower and upper boundaries, respectively. The whole
layer can rotate about the z-axis with an angular velocity
Ω. Gravity acts in negative z-direction: g = −gêz. The
setup is assumed to be placed in a magnetic field H par-
allel to êz, which would be homogeneous if the magnetic
fluid were absent.

Magnetic fluids can be modeled as liquid non-conduc-
ting super-paramagnets [14,17,18,23]. In such a model we
have to solve the Maxwell equations simultaneously with
the balance equations of entropy (heat equation), linear
momentum (Navier-Stokes equation) and mass (continu-
ity equation). Since the fluid is assumed to be insulating,
the Maxwell equations reduce to

∇ ·B = 0 (1)
∇×H = 0. (2)

Because of equation (2) we can express the magnetic field
by a scalar potential

H = −∇φ. (3)

The viscous stress tensor entering the Navier-Stokes equa-
tion has to be extended by a suitable magnetic part.
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Table 1. Physical parameters of the magnetic fluid EMG 905
produced by Ferrofluidics.

density ρ

�
kg

m3

�
1.24 × 103

kinematic viscosity (27◦C) ν

�
m2

s

�
12× 10−6

thermal diffusivity κ

�
m2

s

�
8× 10−8

heat capacity cp

�
J

kg K

�
1.47 × 103

coefficient of volume expansion α

�
1

K

�
8.6× 10−4

susceptibility at low field χ 1.9

pyromagnetic coefficient at H = 50
kA

m

�
A

Km

�
110

mean particle diameter [nm] 10.2

For this contribution we will use the formulation of the
magnetic stress tensor proposed by Rosensweig [14]:

Tm =

[
µ0

∫ H

0

(
∂(Mv)
∂v

)
θ,H

dH +
µ0

2
H2

]
I + BH, (4)

where µ0 is the magnetic permeability of vacuum, M the
magnetization of the fluid, v the specific volume, I the
unity tensor and B the magnetic induction. This stress
tensor significantly simplifies by assuming that the mag-
netization of the fluid can be written in the form

M = [M0 + χ(H −H0)−K(θ − θ0)]êz , (5)

where M0 = M(H0, θ0) (H0 and θ0 are the values in the
middle of the layer), χ is the magnetic susceptibility and
K is the pyromagnetic coefficient (see Tab. 1 for a set of
data of a commercially available magnetic fluid [27,32]).
Using this approximation, the gradient of Tm reduces to
the magnetic Kelvin force µ0M∇H plus a pressure like
term [14] so the Navier-Stokes equation in a corotating
frame reads:

ρ
∂v
∂t

+ ρv · ∇v = −∇τ + ρg + µ0M∇H

+ η∇2v + 2ρv×Ω, (6)

with the velocity field v = (vx, vy, vz), the viscosity η, the
mass density ρ and a modified pressure τ , which includes
all terms that can be written as gradients. Throughout
our analysis we will assume that the rotation rate is small
and the effective g stays parallel to the z-axis. Neglecting
viscous dissipation, the heat equation in magnetic fluids
reads (see e.g. Refs. [17,33]):[

∂

∂t
+ v · ∇

]
θ +

µ0θK

ρC

[
∂

∂t
+ v · ∇

]
∂zφ = κ∇2θ, (7)

where C is a modified heat capacity and κ the thermal
diffusivity. Inserting typical values shows that the φ-term
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Fig. 2. A displaced fluid particle experiences a force. If the
force points in the direction of the displacement the layering
might be unstable.

on the left hand side is small compared to the other
terms. For this reason we will neglect it in our further
calculations.

The boundaries are assumed to be ideal thermal con-
ductors, thus the temperature of the fluid at the bound-
aries is identical to the applied temperature. For the ve-
locity field we deal with both (stress-) free boundaries (to
obtain closed analytical expressions as results)

0 = êx · (n̂ · T) = êy · (n̂ · T) (8)
0 = vz (9)

where T is the stress tensor and rigid (experimental)
boundaries (to give concrete predictions for experiments)

0 = v. (10)

Last but not least, the magnetic field and the magnetic
induction have to fulfill the usual continuity conditions.

0 = êz · (Bint. −Bext.) (11)
0 = êz × (Hint. −Hext.). (12)

One easily sees that a pure conductive state fulfills the
governing equations. Using the averaged temperature gra-
dient β = θ1−θ2

d (β is positive if the lower plate is warmer
than the upper one), this conductive state is given by:

v = 0 (13)
θ = θ0 − βz (14)

M = M0 +
Kβz

1 + χ
(15)

H = H0 −
Kβz

1 + χ
, (16)

with an unperturbed magnetic field outside the layer.
Before presenting our results we will highlight an im-

portant difference between the driving forces involved in
convection in a magnetic fluid (see Fig. 2). Consider two
fluid particles, one (b) displaced by a distance ∆z in the
layer (but leaving its internal properties — such as tem-
perature and density — unchanged), and the other (a)
kept at its initial position (thus having the equilibrium
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properties given by Eqs. (13) through (16)). The result-
ing force density f on the displaced particle is given by
the difference between the force densities on particles (b)
and (a) f = fb − fa. If this force density points in the
direction of the displacement, the layering might be un-
stable, otherwise it is stable. Evaluating this expression
for buoyancy (f ∼ β∆z êz) and the magnetic Kelvin force
(f ∼ β2 ∆z êz) shows a significant difference: whereas
buoyancy is only destabilizing when the layer is heated
from below (β > 0), the Kelvin body force is always desta-
bilizing independent of the sign of the applied temperature
gradient β.

Heat conduction and viscous dissipation always stabi-
lize the layering and counteract these driving forces. For
small applied temperature gradients, the dissipative, sta-
bilizing, mechanisms will dominate the behavior of the
system and equations (13) through (16) hold. Above a
certain temperature gradient (called the critical tempera-
ture gradient) the layering in the sample is unstable and
increasing thermal fluctuations can lead to convection. In
the following section we will determine the threshold val-
ues at which convection sets in.

3 Linear stability analysis

3.1 Dimensionless equations

To write the governing equations in dimensionless form we
introduce characteristic scales: d for length, d2

κ for time,
βd for temperature, Kβd2

1+χ for magnetic potential and κ
d

for velocity. Since the magnetic fluid will, in general, alter
the magnetic field outside the fluid layer, we have to solve
the Maxwell equations in the whole space. For this reason
we use Φe, the magnetic potential outside the fluid layer,
as an additional variable. Furthermore we add to the con-
ductive solutions small perturbations (e.g. θ → θ + θ′).
In these dimensionless units the governing equations for
the perturbations take in the Boussinesq approximation,
the form (in a corotating frame and after dropping the
primes):

1
P

[
∂

∂t
+ v · ∇

]
v = −∇τ +R(1 +M1)θêz +∇2v

+
√
Tv× êz

+RM1∂zφêz +RM1θ∇∂zφ (17)[
∂

∂t
+ v · ∇

]
θ = ∇2θ (18)

0 = ∇ · v (19)
0 = [∂zz +M3(∂xx + ∂yy)]φ+ ∂zθ (20)

0 = ∇2φe. (21)

In equations (17–21) the external parameters are mea-
sured by the following dimensionless quantities (see Tab. 2
for the explicit definitions): the Rayleigh number R repre-
sents the dimensionless temperature gradient, the dimen-
sionless rotation rate is incorporated in the Taylor num-
ber T (which is proportional to the square of the angular

velocity), the ratio between the magnetic force and the
buoyancy is measured by the constant M1, M3 is a mea-
sure of the deviation of the magnetization curve from the
linear behavior M0 = χH0, and the Prandtl number P
is the ratio between the kinetic viscosity and the thermal
diffusivity.

We note that some authors use instead of T , the dimen-
sionless rotation rate Ω0 = d2

ν Ω, which is connected to T
via T = 4 Ω0

2. Using the equations in this form includes
two dependent variables: the pressure τ and one compo-
nent of the velocity field could easily be eliminated by
applying ∇× and ∇×∇× to the Navier-Stokes equation
and then considering only the z component of the result-
ing equations. We will keep all variables for completeness.
The equation governing rotating convection in simple flu-
ids are obtained in the limit M1 → 0 and M3 = 1. Later
on we will refer to the governing equations in the form

Lu+N (u|u) = 0, (22)

where u = (vx, vy, vz , θ, φ, τ) and L and N represent, re-
spectively, the linear and nonlinear parts of equations (17)
through (20). Using ∇̃2 = ∂zz +M3(∂xx + ∂yy), they can
be expressed as

L =0
BBBBBBBBBB@

∇2 − 1
P ∂t

√
T 0 0 0 −∂x

−
√
T ∇2 − 1

P ∂t 0 0 0 −∂y
0 0 ∇2 − 1

P ∂t R(1 +M1) RM1∂z −∂z
0 0 1 ∇2 − ∂t 0 0

0 0 0 ∂z ∇̃2 0

∂x ∂y ∂z 0 0 0

1
CCCCCCCCCCA

(23)

and

N (u(p)|u(q))=


− 1

P (v(p) · ∇)v(q)+RM1θ
(p)∇∂zφ(q)

− (v(p) · ∇)θ(q)

0
0

.
(24)

The boundary conditions for the perturbations now read
(for a detailed derivation see i.e. Refs. [17,18,23]): for rigid
boundaries

v
(
z = ±1

2

)
= 0, (25)

for free boundaries

vz

(
z = ±1

2

)
= ∂zvx

(
z = ±1

2

)
= ∂zvy

(
z = ±1

2

)
= 0,

(26)
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Table 2. The dimensionless parameters introduced in equations (17–21). In these definitions α denotes the coefficient of volume
expansion and ν the kinematic viscosity.

parameter notation definition

Rayleigh number (temperature gradient) R
αβgd4

νκ

Prandtl number P
ν

κ

Taylor number (rotation parameter) T 4
d4

ν2
Ω2

strength of magnetic force relative to buoyancy M1
µ0K

2β

(1 + χ)αρg

nonlinearity of magnetization M3

1 + M0
H0

1 + χ

and, independent of the velocity boundary conditions,

θ

(
z = ±1

2

)
= 0 (27)

φ

(
z = ±1

2

)
= φe

(
z = ±1

2

)
(28)

(1 + χ)∂zφ
(
z = ±1

2

)
= ∂zφe

(
z = ±1

2

)
. (29)

As already mentioned above, the fact that closed ana-
lytical results allow a more direct insight to the physi-
cal mechanisms to be gained, motivated our use of free
boundary conditions. From the experimental point of view
free boundary conditions usually coincide with deformable
boundaries and this gives rise to surface instabilities [28]
which can interact with the convection patterns [27]. A full
analysis of the problem with free and deformable bound-
aries is beyond the scope of this article and we will restrict
ourselves to the case of free but fixed boundaries.

3.2 Solutions to the linearized equations

When convection sets in, thermal noise with a certain wave
number is no longer overdamped and can grow. With lin-
ear considerations it is sufficient to deal with each wave
number separately. For example our ansatz for the vertical
component of the velocity field reads:

vz = W (z) exp(λt+ iax) + c.c., (30)

where we set the wave vector a of the convection rolls to
be parallel to the x-axis. The time dependence exp(λt) =
exp[(σ + iω)t] includes both the growth rate σ and a pos-
sible oscillation with a frequency ω

2π . If the layering is
stable, the growth rate σ is negative for all wave vectors.
Just above convective onset, σ becomes positive for a small
band of wave numbers. Looking for the onset of station-
ary convection we set σ = 0. First we deal with stationary
convection setting ω = 0; later in this section we will also

Table 3. The symmetry of all relevant functions under inver-
sion of the z-axis.

function notation for z dependence z-symmetry

vz W (z) even

vx U(z) odd

vy V (z) odd

θ Θ(z) even

φ Φ(z) odd

τ P (z) odd

investigate the case ω 6= 0. For all unknown functions (vx,
vy, θ, φ, φe and τ) ansätze similar to equation (30) are
made. Since convection rolls are expected as a first in-
stability, the functions should have the symmetries, with
respect to inversion of the z-axis, shown in Table 3.

3.2.1 Free boundaries

In the case of free boundaries, it can easily be shown [1]
that all even derivatives of W (z) must vanish. Thus we let

W (z) = cos (πz) . (31)

Although equations (28, 29) hold for both rigid and free
boundaries, we have to restrict ourselves to the limit-
ing case χ → ∞, because this is the only possibility to
continue with this simple analytical ansatz. Later on we
will show the cases for which these results differ from re-
sults for experimentally accessible values of χ. Inserting
equation (31) in the linearized governing equations (22)



162 The European Physical Journal B

Lu = 0 leads to

U(z) = −i
π

a
sin(πz) (32)

V (z) = −i
√
Tπ

a(π2 + a2)
sin(πz) (33)

W (z) = cos(πz) (34)

Θ(z) =
1

π2 + a2
cos(πz) (35)

Φ(z) = − π

(π2 + a2)(π2 + a2M3)
sin(πz). (36)

The dependence on the horizontal coordinates is given in
equation (30). Since P (z) and Φe(z) do not enter into fur-
ther calculations we do not give them explicitly. If rota-
tion was absent, one would expect a two-dimensional flow
field with vanishing V (z). In rotating convection however,
such a flow field is impossible due to the Taylor-Proudman
theorem [1]. For a non-viscous fluid this theorem predicts
(for the geometry investigated here) a two-dimensional
flow field which lies in the plane perpendicular to the axis
of rotation. Since we deal with viscous fluids the Taylor-
Proudman theorem holds only in the limit of large rotation
rates. For small rotation rates (small T ), V (z) is negligible
and the flow field lies in the xz-plane, but for large T vy
is the dominant component of the velocity. As solvability
condition to the linear part of equation (22) we find

R =
(π2 + a2M3)

(1 +M1)(π2 + a2M3)−M1π2

Tπ2 + (π2 + a2)3

a2
,

(37)

which is the analytical form of the curve of marginal sta-
bility (the region below the curve corresponds to the con-
ductive state and the region above to the convective state
of the system). Note the similarity to the corresponding
formula in the simple fluid case: the critical Rayleigh num-
ber can be factorized in a non-magnetic part (the second
fraction is the well known result for simple fluids [1]) and
a magnetic part. The values of the Rayleigh number and
the wave number at the onset of convection (Rc and ac)
result from a minimization of R (Eq. (37)) with respect to
a. These critical values depend on the system parameter
M1, M3 and T . Figure 3 gives an overview of the criti-
cal values as a function of the rotation rate (T ) and the
relative strength of the magnetic forces (M1). These plots
show two distinct regimes. At low rotation rates both the
critical wave number ac and the critical Rayleigh number
Rc depend only the magnetic parameters and are almost
independent of T . At high T all critical values follow uni-
versal power laws. We will derive and discuss these power
laws in Section 3.3.

Let us remark that making the same calculation for
a possible oscillatory instability (ω 6= 0) leads to, besides
a somewhat modified version of equation (37), a second
condition of solvability:

ω2

P 2
=

1− P
1 + P

Tπ2

π2 + a2
− (π2 + a2)2. (38)
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Fig. 3. Overview of the critical Rayleigh numbers (left) and
wave numbers (right) for free boundaries and various magnetic
parameters as a function of T . The parameter M3 = 1 was
chosen for the smallest M1 and M3 = 1.1 in all other cases.
For a detailed discussion of the fit see Section 3.3.

One easily sees that this condition can only be fulfilled
for Prandtl numbers smaller than unity. Thus, for free
boundaries, oscillatory convection can be ruled out for all
commercially available magnetic fluids.

3.2.2 Rigid boundaries

The boundary conditions for rigid boundaries do not al-
low simple solutions as in the case of free boundaries. In
this work we solve the linearized equations Lu = 0 by lin-
ear combination of exponential functions (see Refs. [1,7]).
With respect to the symmetries summarized in Table 3,
these functions now read

W (z) =
n∑
j=1

Bjwj
cosh(qjz)
cosh

( qj
2

) (39)

Θ(z) =
n∑
j1

Bjtj
cosh(qjz)
cosh

( qj
2

) (40)

Φ(z) =
n∑
j=1

Bjfj
sinh(qjz)
sinh

( qj
2

) (41)

Φe(z) =


Bn+1

exp(−a|z|)
exp

(
−a2
) for z > 0

−Bn+1
exp(−a|z|)
exp

(
−a2
) for z < 0

(42)

and analogous formulas for horizontal components of the
velocity field and the pressure can be derived. In equa-
tions (39–41) we introduced the following notations: qj
are the roots of the characteristic polynomial Q associ-
ated with L

Q =
{
− (q2 − a2M3)

[
(q2 − a2)3 + Tq2 + a2R(1 +M1)

]
+ a2RM1q

2

}
(q2 − a2). (43)
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Fig. 4. Overview of the critical Rayleigh numbers (left) and
wave numbers (right) for rigid boundaries and various mag-
netic parameters as a function of T (magnetic parameters as
in Fig. 3). For a detailed discussion of the fit see Section 3.3.

This polynomial is bi-quintic, thus there are five indepen-
dent contributions to the eigenfunctions of L, i.e. n = 5.
The constants wj , tj and fj (as well as uj and vj , which
are the equivalents for U(z) and V (z), respectively) are
determined by Lu = 0:

fj = 1 (44)

tj = −
q2
j − a2M3

qj
coth

(qj
2

)
(45)

wj = (q2
j − a2)tj (46)

uj =
iqj
a

tanh
(qj

2

)
wj (47)

vj = −i
aR
[
(1 +M1)tj tanh

( qj
2

)
+M1qj

]
√
Tqj

− i
(q2
j − a2)3tj tanh

( qj
2

)
√
Tqj

· (48)

Once again we omit all unnecessary functions in the fol-
lowing. Comparison of uj and vj shows again the effect
of the Taylor-Proudman theorem. Inserting the charac-
teristic polynomial in vj reveals that vj is proportional
to
√
T as for free boundaries. Inserting the solution of

Lu = 0 into the boundary conditions leads to a system of
six coupled linear equations for the coefficients Bj . The
solvability condition for them gives the neutral curve and
solving them explicitly one obtains the constants Bj and
the solutions of Lu = 0 for rigid boundaries. Since we have
to compute the roots of the characteristic polynomial nu-
merically, there is no analytic expression for the neutral
curve. Minimization of the neutral curve gives the critical
values for rigid boundaries. An overview of the result can
be found in Figure 4. If not mentioned explicitly, in all cal-
culations for rigid boundaries we assume the susceptibility
of the fluid to be χ = 2. As in the free boundary case, the
two regimes at low and high rotation rates appear.

Using the same procedure to solve the equations, we
searched for an oscillatory instability for rigid boundaries.
In all investigated cases we can exclude such an instability,
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Fig. 5. At a constant ratio between the magnetic forces and
buoyancy, the critical values (here for rigid boundaries) depend
significantly on the susceptibility of the fluid.

given that the Prandtl number is larger than unity (for all
magnetic fluids currently available).

3.2.3 Dependence of the critical values on the susceptibility

Independent of the magnetic parameters M1 and M3, the
susceptibility χ enters the governing equations via the
magnetic boundary conditions. Varying the susceptibil-
ity of the fluid (but keeping the other parameters con-
stant) has a significant influence on the critical values. In
Figure 5 we plot the Rayleigh number and the wave num-
ber as ratios between their critical values at a certain finite
χ and χ→∞, for the case of rigid boundary conditions.

Using the method of solution described for rigid
boundaries we can drop the assumption χ → ∞ in the
free boundary case. The variation of the critical values
here is more important than for rigid boundaries (Rc is
reduced by approximately 25%), but the overall form of
the curves is the same as in Figure 5. This illustrates an-
other limitation of the applicability of the analytic calcula-
tions for free boundaries (in Sect. 3.1 we already discussed
the Rosensweig instability). The critical values for realistic
susceptibilities differ significantly from those for χ→∞.

3.3 Comparison of the above results to asymptotic
solutions

3.3.1 Large rotation rates

Expanding the linear equations for free boundaries in the
limiting case T → ∞ leads to the following equation for
the z-dependence of vz :[

−a6 + T∂zz + a2R(1 +M1)
]
W = 0. (49)

In accordance with the boundary conditions this equation
can be solved by a cos-ansatz, which leads to the following
expression for the neutral curve:

R′ := R(1 +M1) = a4 + π2 T

a2
· (50)
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Table 4. Comparison of the power laws for the critical values
at large the Taylor numbers (ac = a0 T

γ, Rc = R0 T
δ) with a

fit for T > 107 to the exact results.

boundaries fit power law

free R0 8.8 8.696

δ 0.666 2
3

a0 1.305 1.3048

γ 0.16667 1
6

rigid R0 5.82 8.696

δ 0.677 2
3

a0 0.984 1.3048

γ 0.175 1
6

Thus the critical values are given by

ac =
[

1
2
π2T

] 1
6

≈ 1.3 T
1
6 (51)

and

R′c = 3
[

1
2
π2T

] 2
3

≈ 8.7 T
2
3 . (52)

Figures 3 and 4 show that these power laws are in good
agreement with the results presented above (for both rigid
and free boundaries). To emphasize this point further
we compare these asymptotic results to fits for large T
(T > 107) to our earlier results in Table 4. For free bound-
aries the fitted values are almost indistinguishable from
the asymptotic predictions. Rigid boundaries seem to be
more constraining for the system and so there are still
some small differences between the asymptotic exponents
and the fitted values for all used values of the Taylor num-
ber. The differences in the prefactors reflect the influence
of the boundary conditions on the critical values.

From equation (50) it follows also that the critical
Rayleigh number, scaled by a factor (1 + M1), should be
independent of M1 at large T . In Table 5 we show, that the
scaling factors needed to superpose the curves of Rc(T ) for
different M1 are indeed very close to (1 +M1).

3.3.2 Heating from above

As mentioned in Section 2 the Kelvin force also acts
to destabilize the layer if it is heated from above (see
also [19,23]). In our formulation, heating from above is
expressed by a negative β and thus a negative R. This im-
plies also M1 to be negative, since all physical constants
belonging to only one of the two parameters are strongly
positive. For M1 being the ratio between the Kelvin force
and buoyancy, convection is only possible for M1 < −1,
i.e. the destabilizing force (Kelvin) must exceed the sta-
bilizing force (buoyancy). In the limit M1 → −1 both

Table 5. Comparison of the shift factors to the critical
Rayleigh numbers, which allow the curves of Figures 3 and 4
coincide in one curve for free and rigid boundaries.

boundaries M1 fit 1 +M1

free 0.1 1.09986 1.1

1 1.9987 2

10 10.987 11

rigid 0.1 1.0987 1.1

1 1.9964 2

10 10.973 11
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Fig. 6. The critical values in the regime M1 → −1− for rigid
boundary conditions. See text for a detailed discussion.

the critical wave number and the critical Rayleigh num-
ber grow rapidly (see also [23]).

Supposing free boundary conditions and power laws of
the form

ac = a0(−1−M1)γ (53)

for the critical values in the region of M1 ≈ −1 we find
the asymptotic differential equation[
a8M3 − a4R(1 +M1)M3 + a2RM1∂zz

]
W (z) = 0 (54)

for the vertical component of the velocity field. The usual
cos-ansatz leads directly to the asymptotic expressions

a2
c =

3
2

M1

1 +M1

π2

M3
(55)

Rc =
27
4
π4

(
M1

M3

)2 1
(1 +M1)3

(56)

determining the critical values. In Figure 6 we compare
the asymptotic results to the results of the full equations
as presented in Section 3.2.2. Note, that the asymptotic
solution was determined for free boundary conditions, but
is also a very good approximation for the rigid case. No
adjustment of the prefactors (as for the large T limit) was
necessary here.
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4 Weakly nonlinear analysis

4.1 Mathematical formulation and method of solution

4.1.1 Expansion in a small parameter

To describe the system operating slightly above the critical
Rayleigh number, we perform a weakly nonlinear analysis
following the lines of Schlüter, Lortz and Busse [2]. A re-
cent overview of weakly nonlinear analysis on rotating con-
vection in simple fluids is given by Clune and Knobloch [7].
With the small parameter

ε2 =
R−Rc

R
(57)

we expand all functions in ε and assume that all varia-
tions of the linearized solutions can be incorporated into
an amplitude function A.

u→ εA
[
u(0) + εu(1) + ε2u(2) +O(ε3)

]
. (58)

Here u(0) is the linear solution determined in the previous
section. Inserting (58) into the governing equations, we
can expand these equations in orders of ε and obtain the
hierarchy of equations

ε1 : L(0)u(0) = 0 (59)

ε2 : L(0)u(1) = −N (u(0)|u(0)) (60)

ε3 : L(0)u(2) = −L(2)u(0) −N (u(0)|u(1))−N (u(1)|u(0)).
(61)

These equations must be solved iteratively each time ful-
filling the solvability condition

〈u+|r.h.s.〉 = 0, (62)

where u+ is the solution to the linear adjoint problem
(see below), r.h.s. is the corresponding right hand side of
equations (59) through (61) and 〈·〉 denotes the average
over a suitable volume. This solvability condition is
trivially satisfied in order ε. In order ε2 a mere integration
over the horizontal coordinates shows that (62) is fulfilled,
since u+ and N (u(0)|u(0)) contain different exponential
functions. But (62) leads to an equation for the amplitude
A in ε3 of the type [7,34,35]

τ0∂tA =
[
ε2 + ξ2

0∂xx − g|A|2
]
A. (63)

The coefficients of this equation are [7,35]:

τ0 =
(
Rc

∂λ

∂R

)−1
∣∣∣∣∣
Rc

(64)

ξ2
0 =

1
2Rc

∂2R

∂a2

∣∣∣∣
Rc

(65)

g =

[(
Rc

∂λ

∂R

)−1

〈u+|N (u(0)|u(1)) +N (u(1)|u(0))〉
]
Rc

.

(66)

For plots of these coefficients see Section 4.2.

4.1.2 Adjoint system

To determine the adjoint system of equations we make use
of the identity

〈u+|Lu〉 = 〈L+u+|u〉. (67)

Thus the adjoint system can be calculated via integration
by parts of the governing equations. L+ is obtained by
transposing L and replacing z by −z. Special attention
has to be paid to the boundary conditions of the adjoint
system. They have to be chosen such that all integration
constants vanish. We find that the adjoint boundary con-
ditions for the velocity and the temperature are identical
to equations (25) through (27), but the boundary condi-
tions for the magnetic potential have to be replaced by

φ+

(
z = ±1

2

)
= (1 + χ)φ+

e

(
z = ±1

2

)
(68)

∂zφ
+

(
z = ±1

2

)
= ∂zφ

+
e

(
z = ±1

2

)
. (69)

Using these boundary conditions we obtain the adjoint
solutions u+ following the same procedure as for u(0).

4.1.3 Construction of the nonlinear solution

We solve equation (60) in two steps: First we determine
a special solution of the inhomogeneous system ignoring
the boundary conditions. Then we add a solution of the
homogeneous problem (with the appropriate symmetry —
the opposite of the linear solution) to satisfy the boundary
conditions. The ansätze for u(1) are given by the structure
of N (u|u). We use

5∑
i,j=1

Cij
sinh(qiz)
sinh

(
qi
2

) cosh(qjz)
cosh

( qj
2

) (70)

for odd and

5∑
i,j=1

[
Dij

sinh(qiz)
sinh

(
qi
2

) sinh(qjz)
sinh

( qj
2

) +Eij
cosh(qiz)
cosh

(
qi
2

) cosh(qjz)
cosh

( qj
2

) ]
(71)

for even functions. The constants Cij , Dij and Eij are
different for each function. Inserting these ansätze in
equation (60) leads to a system of linear equations for all
Cij , Dij and Eij which we solve via singular value decom-
position numerically. The so constructed special solution
of equation (60) — the special solution of the inhomo-
geneous system plus the homogeneous solution necessary
to satisfy the boundary condition — is the solution u(1)

which enters equation (66).
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a2
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α

Fig. 7. When the KL instability sets in, the convection rolls
with the wave vector a1 become unstable with respect to con-
vection rolls rotated by an angle α.

4.1.4 Küppers-Lortz instability: two competing amplitudes

For simple fluids it is known [2,36,37] that straight rolls
are stable just above the onset of convection if the rota-
tion rate does not exceed the critical value for the onset
of the KL instability. For the non-rotating case this has
also been shown for magnetic fluids with free boundary
conditions [26]. Following these results we consider the
competition between two sets of convection rolls to in-
vestigate the Küppers-Lortz instability. Thus we will now
investigate under which conditions a roll solution becomes
unstable with respect to a rotated roll solution (both
with the critical wave number) as schematically shown in
Figure 7. To do this we extend the above described method
of solution by ansätze of the type

u(x, y, z) = [A1u1(z) exp(ia1 · r) +A2u2(z) exp(ia2 · r)]
+ c.c., (72)

with two independent amplitudes A1 and A2 correspond-
ing to the roll solutions with the wave vectors a1 and a2

(with |a1| = |a2| = ac). Proceeding with these ansätze in
the same way as above, i.e. expanding u1 and u2 in powers
of ε and solving the resulting equations iteratively leads
to two coupled amplitude equations.

τ0∂tA1 =
[
ε2 + ξ2

0∂x1x1 − g|A1|2 − gα|A2|2
]
A1 (73)

τ0∂tA2 =
[
ε2 + ξ2

0∂x2x2 − g|A2|2 − gα|A1|2
]
A2. (74)

Here the coordinates x1 and x2 are along the direction
of the wave vectors a1 and a2, respectively, xi = ai · r.
The coefficients τ0, ξ0 and g are identical to equations (64)
through (66) if one just takes the terms into account which
contain only one amplitude (either A1 or A2). The cou-
pling constants gα and gα are given by

gα =

[(
Rc

∂λ

∂R

)−1

〈u+
1 |N (u(0)|u(1)) +N (u(1)|u(0))〉

]
Rc

(75)

and

gα =

[(
Rc

∂λ

∂R

)−1

〈u+
2 |N (u(0)|u(1)) +N (u(1)|u(0))〉

]
Rc

,

(76)
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Fig. 8. The linear coefficients appearing in the amplitude
equations (left τ−1

0 and right ξ2
0) as discussed in the text.

where u+
1 and u+

2 are the solutions of the adjoint sys-
tem with the wave vectors a1 and a2 respectively. In the
expressions for gα and gα only terms containing both am-
plitudes must be taken into account.

Bifurcation theory leads to some important results
(see e.g. [7]): If g > 0 the bifurcation is forward.
Equations (73, 74) allow one to determine the range in
which single mode convection (e.g. A1 6= 0 and A2 = 0)
is stable against perturbations of the second mode (A2).
Suppose we have a situation where one amplitude is zero
and the other is non zero. The mode with the vanishing
amplitude can only grow if the coefficient of the cross cou-
pling term (gα or gα) is smaller than the coefficient of the
nonlinear damping term (g) — provided we take the sign
convention used in equations (73, 74). Thus, A1 is unsta-
ble to A2 if g > gα, and A2 is unstable to A1 if g > gα.
In the first case the convection pattern seems to rotate in
the direction of the applied rotation, in the second case
the pattern seems to rotate against this direction.

4.2 Results and discussion

In Figure 8 the linear coefficients of the amplitude equa-
tions are given.

The curves for M1 = 0 agree with the results for sim-
ple fluids [7] and increasing the contribution of the mag-
netic force (M1) does not change the overall behavior. The
other magnetic parameters were fixed at M3 = 1.1 and
χ = 2. We do not present the nonlinear coefficients here,
since they depend on the normalization of the amplitude
functions. But nevertheless we want to point out that g
is always positive, i.e. the bifurcation is forward as in the
simple fluid case. In Figure 9 we show the difference gα−g
for Taylor numbers below and above the critical value. gα
is always larger than g, thus the pattern rotates in the
direction of the external rotation.

In Figure 10 we present the dependence of the KL
angle on M1. The KL angle predicted for convection
including a magnetic force is always greater than for a
simple fluid with the same Prandtl number (results for
M1 = 0). For large absolute values of M1, the curves seem
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Fig. 9. The difference between the nonlinear terms in the am-
plitude equation for the magnetic parameters M1 = 2 and
M3 = 1 and Taylor numbers near the critical value (Tc =
3234.76).
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Fig. 10. The angle α between the initial and the final convec-
tion pattern in the KL instability (left) and the corresponding
critical Taylor number, above which the KL instability sets
in. The solid and dotted curves correspond to the cell heated
from below (M1 > 0), the dashed curves to heating from above
(M1 < 0).

to approach a common value which does not depend on
the sign of M1 but only on the Prandtl number. This be-
havior can be easily understood since the magnetic parts
of the governing equation do not depend on the sign of M1

(if M1 is negative also R is negative). This implies that
magnetically dominated convection does not distinguish
between a system heated from above or below. Thus we
expect the KL angle to be independent of the sign of M1

for large absolute values of M1. The variation of the KL
angle at the largest values of M1 used shows that buoy-
ancy is not yet negligible. As in the simple fluid case, the
KL angle does not vary significantly for Prandtl numbers
between 20 and 100. As shown in Figure 11 the KL an-
gle increases even further if the susceptibility of the fluid
decreases.

In summary, we have reported a well controlled way of
changing the KL angle continuously in thermal convection
in a magnetic fluid between the value corresponding to a
simple fluid (approximately 60◦ for Prandtl numbers typ-
ical for magnetic fluids), to almost 75◦ by increasing the
contribution of the magnetic forces. This makes a range of
KL angles accessible just by tuning a continuously variable

0.0 2.0 4.0 6.0 8.0 10.0
χ

65

66

67

68
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[°

]

Fig. 11. The KL angle increases with decreasing susceptibility
(holding the other magnetic parameters constant). For this plot
we used M1 = 10, M3 = 1 and P = 100.

parameter, the magnetic field. This would not be accessi-
ble using simple fluids.
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